OBJECTIVES

After reading this article, the reader will be able to:
- List the mutations that cause Factor V Leiden and Prothrombin Mutation.
- Outline the incidence of Factor V Leiden and Prothrombin Mutation.
- Diagram the normal negative feedback loop with the coagulation pathway, specifically the role of Thrombin, Protein C, and Factor V.
- Compare how Factor V Leiden mutation differs in the coagulation pathway to wild-type Factor V.

OBJECTIVES

- Predict thrombotic risk status of individuals if given environmental and genetic factors.
- Explain the various molecular methods used to test for inherited thrombophilia.
- Differentiate between Light Cycler and TaqMan assays, including the advantages and disadvantages of each method.
- Justify the importance of quality control in molecular testing.
- Defend the importance of inherited thrombophilia testing.

Venous Thromboembolism

- Natural balance between bleeding and clotting
 - Number of conditions that can sway that balance
 - Surgery, hormone therapy, pregnancy, oral contraception, and immobility due to travel or bed rest
 - Genetic predisposition
 - Venous Thromboembolism (VTE)
 - Deep Venous Thrombosis (DVT)
 - Occurs in the legs resulting in unilateral leg
 - Pulmonary Embolism (PE)
 - Clot travels to the lungs and blocks either pulmonary arteries or lung stems

VTE Detection

- Diagnostics:
 - D-Dimer and ultrasound
- Guidelines for genetic testing:
 - a VTE younger than 50 years old
 - recurrent/unprovoked VTEs
 - clots that occur in uncommon locations
 - a family history of homozygous inherited mutations
 - family history of VTE and has had VTE in self
 - unknown loss of pregnancy in 2nd or 3rd trimesters

Inherited Disorders

- Disorders:
 - Protein C Deficiency
 - Protein S Deficiency
 - Antithrombin Deficiency
 - Factor V Leiden Mutation
 - Prothrombin G20210A Mutation
 - Methylenetetrahydrofolate reductase (MTHFR)
- Functional tests available:
 - Protein C deficiency, Protein S deficiency, Antithrombin deficiency, Factor V Leiden (FVL)
 - APCR-APTT is a phenotypic test for Factor V Leiden
Coagulation Pathway

Factor V
- OMIM 612309
- 1q23
 - 25 exons
- In wild-type individuals
 - FV → (FVa)
 - Cofactor for Factor X
- Excess thrombin initiates a negative feedback loop
 - Thrombomodulin (TM), Endothelial Protein C Receptor (EPCR), Thrombin (T), Protein C (PC)
 - Activated Protein C (APC)
 - Cleaves FVa at 3 sites, Arg 306, Arg 506, and Arg 679

Factor V Leiden
- Inherited autosomal dominant
- G1691A
 - Missense substitution in exon 10
 - Removes the Arg 506 cleavage site
- Heterozygotes: 5-fold increase risk in VTE
- Homozygotes: 80-fold increase
 - Incidence of 2 in 10000 individuals
- Incidence:
 - 5% in Caucasian population
 - Much lower incidence in Asians and African Americans

Additional FV Mutations
- FV Cambridge (R306T) & FV Hong Kong (R306G)
 - Very rare
 - Evidence of increasing risk of thrombosis
- FV R2 haplotypes (A4070G)
 - exon 13
 - Decreases FV levels
 - Increases risk of thrombosis 3-fold
 - Numerous polymorphisms
 - Can be discriminated from FVL by some molecular methods

Prothrombin (Factor II)
- OMIM 176930
- 11p11-q12
 - contains 14 exons
- Synthesized in the liver
 - vitamin K dependent
- Cleaved by FXa
- Forms fibrin which is the foundation of clot formation

Prothrombin Mutation
- Second most common inherited cause of thrombophilia
- G20210A
 - 3' untranslated area from q11-12
 - Increased efficiency of the 3' cleavage signal
 - Increases production of prothrombin
- Heterozygotes: 30% increase
- 2-3 fold increase risk of VTE
- Homozygotes: 70% increase
- Incidence:
 - Caucasian population
 - Southern European descent
 - Heterozygotes: 2%
 - Homozygosity: very rare
 - Rarely seen in Asians and African Americans
Methods of Detection

- The United Kingdom National External Quality Assessment Service (UK NEQAS)
 - surveyed 97 laboratories in Oct 2005
 - 26 laboratories used PCR-RFLP
 - 26 laboratories used LightCycler
 - 14 laboratories used Fluorescence with Allele Specific Discrimination
 - 13 laboratories used ABI TaqMan
 - and less than 5 laboratories used Invader, ARMS, ELISA
- "Gold standard" method
 - Bidirectional sequencing of the SNP region
 - PCR-RFLP or allele-specific PCR may be used as alternatives
- Considerations:
 - PCR
 - QC
 - Instrumentation

Restriction fragment length polymorphism (RFLP)

- The loss of the Arg 506 cleavage site → loss of a MnlI endonuclease site
 - MnlI endonuclease: unstable and expensive
 - Alternatives: TaqI, SacI, and HindIII
- RFLP Steps:
 - DNA extraction
 - PCR amplification
 - Restriction enzyme digestion
 - Visualization on 3% agarose gel
- QC
 - Second internal restriction site
 - PCR controls

RFLP Interpretation

- Digested amplicon
 - Fragments along the length of the gel
 - Loss or gain of a particular fragment
 - For example
 - wild-type: 123 bps
 - Mutation: 148 bps

RFLP: Pros & Cons

- Advantages:
 - Accurate
 - Relatively inexpensive
 - FVL and Prothrombin can be multiplexed
 - Little dedicated molecular equipment
- Disadvantages:
 - Significant hands-on time
 - Post-PCR manipulation
 - Less effective with large numbers
 - Ethidium bromide and UV light
 - Polymorphisms near to SNP affect results

Real-Time PCR: TaqMan

- Two unlabeled primers and probe
 - forward and reverse
 - sequence-specific probe
 - 5' fluorophore
 - 3' quencher
- During the annealing phase of amplification
 - Hybridization to patient DNA
- During the extension phase of amplification
 - 5' to 3' exonuclease activity of DNA polymerase
 - Breakdown of probe
 - Measureable fluorescent signal

TaqMan: Pros & Cons

- Advantages:
 - Sophisticated instrumentation
 - Multiplexing
 - High throughput
 - No post-PCR manipulation
 - Closed system
- Disadvantages:
 - Success depends on proper primer/probe design
 - SNPs
 - Expense
Real-Time PCR: LightCycler

- **Master mix**: Diluent, 2 primers (forward and reverse), 2 probes (fluorescence donor and acceptor), Taq DNA polymerase, dNTPs, Brij 35 (a non-ionic detergent), and MgCl₂.
- **Mutation Probe**: Fluorescein attached to the 3’ end
- **Anchor Probe**: LightCycler Red 640-NH₂ hydroxy succinimide ester at the 5’ end
- **Fluorescence resonance energy transfer (FRET)**: Light energy (hv) excites the fluorescein. Energy will then transfer to the Red 640-NHS ester, producing a fluorescent signal.

LightCycler: Melting Curve

- **End of the amplification**: Cooling the samples to 35°C
- **Increasing the temperature**: 0.1°C/s to 75°C.
- **If the mutation is present**: Mismatch will have lower Tm.
 - Wild-type: 65°C ± 2.5°C
 - Mutant: 57°C ± 2.5°C
- **Allow to distinguish heterozygotes and homozygotes**

LightCycler: Pros & Cons

- **Advantages**:
 - Multiplex
 - No post-PCR manipulation
 - Little hands on time
 - Closed system
 - IVD FDA approved for FVL and FII G20210A
- **Disadvantages**:
 - Sample identification
 - Expensive
 - Affected by polymorphisms

Future Work

- **Algorithms**
 - Incorporate all risk factors
 - Provide better risk assessment to patients
 - Better management of pregnancies
- **Microarrays**
 - Assess several factors at the same time
 - Drug personalization
 - Cytochrome p450 and vitamin K epoxide reductase (VKORC1)
- **Additional mutations**
 - African Americans populations
 - Coagulation pathway

References